ROBUVIT

Robuvit® é um extrato patenteado obtido da madeira de carvalho francês (Quercus robur), padronizado em 40% de polifenóis. É um ativo natural com potente ação antioxidante, energizante e regeneradora, amplamente estudado em mais de 30 ensaios clínicos. Após sua ingestão, o organismo converte seus compostos, chamados roburinas, em metabólitos bioativos conhecidos como urolitinas, responsáveis por suas principais ações biológicas.

Essas urolitinas atuam estimulando a produção de energia celular (ATP) e promovendo o rejuvenescimento das mitocôndrias por meio da mitofagia, um processo que substitui mitocôndrias danificadas por novas, mais funcionais.

Além disso, o Robuvit® aumenta a síntese de ribossomos, organelas essenciais na formação de proteínas estruturais e enzimáticas, o que melhora a função muscular, a recuperação física e o metabolismo energético.

PERGUNTAS FREQUENTES

Indicações
  • Cansaço e fadiga física ou mental;

  • Estresse e Burnout;

  • Baixa energia e indisposição;

  • Melhora da performance esportiva e da recuperação muscular;

  • Distúrbios do sono e humor deprimido;

  • Convalescença (recuperação após cirurgias, infecções ou viroses);

  • Suporte hepático e linfático;

  • Síndrome da fadiga crônica ou cansaço persistente.

Benefícios
  • Aumenta a produção de energia e reduz a fadiga crônica.

  • Melhora o desempenho físico e a recuperação muscular.

  • Estimula a síntese de proteínas, favorecendo força e regeneração tecidual.

  • Melhora o humor, a disposição e a qualidade do sono.

  • Atua no manejo da síndrome de Burnout, estresse e exaustão mental.

  • Apoia a função hepática e a drenagem linfática.

  • Favorece a recuperação pós-cirúrgica e pós-viral (como gripe e mononucleose).

  • Protege contra o estresse oxidativo e o envelhecimento celular.

Mecanismo de Ação

REGENARAÇÃO MITOCONDRIAL 

As urolitinas estimulam a mitofagia, processo que elimina mitocôndrias danificadas e promove a formação de novas mitocôndrias funcionais, restaurando a capacidade de produzir energia (ATP).
Resultado: mais energia, vitalidade e melhor desempenho físico e mental. Ativação da síntese proteica (biogênese ribossomal)

O Robuvit® aumenta a formação de ribossomos, organelas responsáveis pela síntese de proteínas essenciais  incluindo colágeno, enzimas, fibras musculares e anticorpos.
Resultado: melhor recuperação muscular, fortalecimento imunológico e regeneração tecidual.

Além disso, sua potente ação antioxidante e anti-inflamatória protege as células contra o estresse oxidativo, reduzindo o impacto do envelhecimento celular e auxiliando na desintoxicação hepática.

Posologia
  • Uso oral.

  • Dose recomendada: Isolado: 200 a 300 mg/dia. Associado a outros ativos: 100 mg/dia.

  • Pode ser administrado em cápsulas, sachês, suspensões ou shots, conforme formulação manipulada.
Contraindicação
  • Não foram observados efeitos colaterais significativos nos estudos clínicos.

  • Contraindicado para gestantes, lactantes, crianças e pessoas com hipersensibilidade aos componentes da fórmula.

.

Interações Medicamentosas

Nenhuma substância conhecida a evitar.

Referências Bibliográficas

1 GURĂU, Felicia et al. Anti-senescence compounds: a potential nutraceutical approach to
healthy aging. Ageing Research Reviews, v. 46, p. 14-31, 2018.
2 TUTTLE, Camilla SL et al. Cellular senescence and chronological age in various human
tissues: a systematic review and meta‐analysis. Aging Cell, v. 19, n. 2, p. e13083, 2020.
3. GUO, Jun et al. Aging and aging-related diseases: From molecular mechanisms to
interventions and treatments. Signal Transduction and Targeted Therapy, v. 7, n. 1, p. 391,
2022.
4. LI, Zhe et al. Aging and age‐related diseases: from mechanisms to therapeutic strategies.
Biogerontology, v. 22, n. 2, p. 165-187, 2021.
5. LÓPEZ-OTÍN, Carlos et al. The hallmarks of aging. Cell, v. 153, n. 6, p. 1194- 1217, 2013.
6.DUTHIE, Susan J. Berry phytochemicals, genomic stability and cancer: evidence for
chemoprotection at several stages in the carcinogenic process. Molecular nutrition & food
research, v. 51, n. 6, p. 665-674, 2007.
7. FERGUSON, Lynnette R. Role of plant polyphenols in genomic stability. Mutation
Research/Fundamental and Molecular Mechanisms of Mutagenesis, v. 475, n. 1-2, p. 89-
111, 2001.

8. COLLINS, Andrew R. Carotenoids and genomic stability. Mutation Research/Fundamental
and Molecular Mechanisms of Mutagenesis, v. 475, n. 1- 2, p. 21-28, 2001.
9. MAKPOL, Suzana et al. Tocotrienol-rich fraction prevents cell cycle arrest and elongates
telomere length in senescent human diploid fibroblasts. BioMed Research International, v.
2011, 2011.
10. MAKPOL, Suzana et al. γ-Tocotrienol prevents oxidative stress-induced telomere
shortening in human fibroblasts derived from different aged individuals. Oxidative Medicine
and Cellular Longevity, v. 3, p. 35-43, 2010. REFERÊNCIAS
11. MARCON, Francesca et al. Diet-related telomere shortening and chromosome stability.
Mutagenesis, v. 27, n. 1, p. 49-57, 2012.
12. TIWARI, Vinod; WILSON, David M. DNA damage and associated DNA repair defects in
disease and premature aging. The American Journal of Human Genetics, v. 105, n. 2, p.
237-257, 2019.
13. FERRUCCI, Luigi et al. Measuring biological aging in humans: A quest. Aging cell, v. 19,
n. 2, p. e13080, 2020.
14. HUMPHREYS, Vikki et al. Age-related increases in DNA repair and antioxidant
protection: a comparison of the Boyd Orr Cohort of elderly subjects with a younger
population sample. Age and ageing, v. 36, n. 5, p. 521- 526, 2007.
15. GUEX, Camille Gaube et al. Tucumã (Astrocaryum aculeatum) extract: phytochemical
characterization, acute and subacute oral toxicity studies in Wistar rats. Drug and Chemical
Toxicology, v. 45, n. 2, p. 810-821, 2022.
16. ABOTALEB, Mariam et al. Flavonoids in cancer and apoptosis. Cancers, v. 11, n. 1, p. 28,
2018.
17. HUSSAIN, Yaseen et al. Flavonoids targeting the mTOR signaling cascades in cancer: A
potential crosstalk in anti-breast cancer therapy. Oxidative Medicine and Cellular Longevity,
v. 2022, 2022.

18. RAJASINGHE, Lichchavi Dhananjaya; HUTCHINGS, Melanie; GUPTA, Smiti Vaid. Delta-
tocotrienol modulates glutamine dependence by inhibiting ASCT2 and LAT1 transporters in non-small cell lung cancer (NSCLC) cells: A metabolomic approach. Metabolites, v. 9, n. 3,p. 50, 2019.

19. AMORIM, João A. et al. Mitochondrial and metabolic dysfunction in ageing and age-
related diseases. Nature Reviews Endocrinology, v. 18, n. 4, p. 243- 258, 2022.

20. CHOW, Ching K. et al. Vitamin E regulates mitochondrial hydrogen peroxide generation.
Free Radical Biology and Medicine, v. 27, n. 5-6, p. 580- 587, 1999

21. TRICARICO, PaolaMaura;CROVELLA,Sergio;CELSI,Fulvio.Mevalonatepathway blockade,
mitochondrialdysfunctionandautophagy:apossiblelink.Internationaljournalof molecular
sciences, v.16,n.7,p.16067-16084,2015.
22. MAO, Gaowei et al.Effectofamitochondria-targetedvitaminEderivativeon
mitochondrial alterationandsystemicoxidativestressinmice.Britishjournalofnutrition,v.
106, n. 1, p. 87-95, 2011.
23 LIM, Hyun; PARK, Haeil;KIM,HyunPyo.Effectsofflavonoidsonsenescence-associated secretory phenotype formationfrombleomycininducedsenescenceinBJfibroblasts. Biochemical Pharmacology,v.96,n.4,p.337-348,2015.
24. CHONDROGIANNI, Nikietal.Anti-ageingandrejuvenatingeffectsofquercetin.
Experimental gerontology,v.45,n.10,p.763-771,2010.
25. ARGYROPOULOU,Aikaterinietal.Naturalcompoundswithanti-ageingactivity.Natural
product reports,v.30,n.11,p.1412-1437,2013.
26.MALAVOLTA,Marcoetal.Modulatorsofcellularsenescence:mechanisms,promises,and challengesfrominvitrostudieswithdietarybioactivecompounds.Nutritionresearch,
v. 34, n. 12,p.1017-1035,2014.
27.DURANI,L.W.etal.Targetinggenesininsulin-associatedsignallingpathway,DNA damage, cellproliferationandcelldifferentiation pathways bytocotrienol-rich fraction in preventing cellular senescence of human diploidfibroblasts.Clin Ter, v.166, n.6, p.e365-
73, 2015.
28. WU, H.A.O.;SUN,YiEve.Epigeneticregulationofstemcelldifferentiation.Pediatric
research, v. 59, n. 4, p. 21-25, 2006.
29.TOMPKINS,JoshuaD.etal.Epigeneticstability,adaptability,andreversibilityinhuman embryonic stemcells.ProceedingsoftheNationalAcademyofSciences,v.109,n.31,p.
12544-12549, 2012.
30.TORELLO,CristianeO.etal.PolyphenolsModulateQuiescence/Mobilizationof
HematopoieticImmature Cells through APC/EPCR/PAR-1 Axis.Blood, v.132, p.3830, 2018.
31.RUSSELL,RyanC.;YUAN,Hai-Xin;GUAN,Kun-Liang.Autophagyregulationbynutrient
signaling.Cellresearch, v.24, n.1, p.42-57, 2014.

32.KWON,Yoojinetal.Autophagyispro-senescencewhenseeninclose-up,butanti-
senescence inlong-shot.Molecules andcells, v.40, n.9, p.607, 2017.

33.VAKILI,Sinaetal.QuercetinandvitaminEalleviateovariectomy‐inducedosteoporosis
by modulatingautophagyandapoptosisinratbonecells.JournalofCellularPhysiology,v.
236, n. 5, p.3495-3509,2021.

34. CHO, Injeong; SONG, Hyun‐Ok; CHO, Jeong Hoon. Flavonoids mitigate neurodegeneration
in aged Caenorhabditis elegans by mitochondrial uncoupling. Food Science & Nutrition, v. 8, n.
12, p. 6633-6642, 2020.
35. LIU, Jun et al. Roles of telomere biology in cell senescence, replicative and
chronological ageing. Cells, v. 8, n. 1, p. 54, 2019.
36. COLLINS, Andrew R. Carotenoids and genomic stability. Mutation
Research/Fundamental and Molecular Mechanisms of Mutagenesis, v. 475, n. 1- 2, p. 21- 28, 2001.
37. WAAIJER, Mariëtte EC et al. P16INK4a positive cells in human skin are indicative of
local elastic fiber morphology, facial wrinkling, and perceived age. Journals of Gerontology
Series A: Biomedical Sciences and Medical Sciences, v. 71, n. 8, p. 1022-1028, 2016.
38. HO, Chin Yee; DREESEN, Oliver. Faces of cellular senescence in skin aging. Mechanisms
of Ageing and Development, v. 198, p. 111525, 2021.
39. NAKAGAWA, Kiyotaka et al. γ-Tocotrienol reduces squalene hydroperoxide-induced inflammatory responses in HaCaT keratinocytes. Lipids, v. 45, p. 833-841, 2010.
40. SHIBATA, Akira et al. Suppression of γ-tocotrienol on UVB induced inflammation in
HaCaT keratinocytes and HR-1 hairless mice via inflammatory mediators multiple signaling.
Journal of Agricultural and Food Chemistry, v. 58, n. 11, p. 7013-7020, 2010.
41. HAAG, Stefan F. et al. Determination of the antioxidative capacity of the skin in vivo using resonance Raman and electron paramagnetic resonance spectroscopy. Experimental
dermatology, v. 20, n. 6, p. 483-487, 2011.
42. LADEMANN, Juergen et al. Carotenoids in human skin. Experimental dermatology, v. 20,
n. 5, p. 377-382, 2011. PALOZZA, Paola; KRINSKY, Norman I. β-Carotene and α-tocopherol
are synergistic antioxidants. Archives of Biochemistry and Biophysics, v. 297, n. 1, p. 184-
187, 1992.
43. DARVIN, Maxim E.; STERRY, Wolfram; LADEMANN, Jürgen. Resonance Raman
spectroscopy as an effective tool for the determination of antioxidative stability of
cosmetic formulations. Journal of Biophotonics, v. 3, n. 1‐2, p. 82-88, 2010.
44. BAR-NATAN, Ronit et al. Interaction between β-carotene and lipoxygenase in human
skin. The International Journal of Biochemistry & Cell Biology, v. 28, n. 8, p. 935-941, 1996.
45. ANBUALAKAN, Kirushmita et al. A Scoping Review on the Effects of Carotenoids and
Flavonoids on Skin Damage Due to Ultraviolet Radiation. Nutrients, v. 15, n. 1, p. 92, 2022.
46. CHANG, Hsin-Wen et al. Alteration of the cutaneous microbiome in psoriasis and
potential role in Th17 polarization. Microbiome, v. 6, n. 1, p. 1-27, 2018.47. WANG, Kang et al. Epigenetic regulation of aging: implications for interventions of aging
and diseases. Signal Transduction and Targeted Therapy, v. 7, n. 1, p. 374, 2022.
48. PEREIRA, Quélita Cristina et al. The Molecular Mechanism of Polyphenols in the
Regulation of Ageing Hallmarks. International Journal of Molecular Sciences, v. 24, n. 6, p.
5508, 2023.
49. SHI, John et al. Polyphenolics in grape seeds—biochemistry and functionality. Journal
of medicinal food, v. 6, n. 4, p. 291-299, 2003. 
50. SHENG, Rui; GU, Zhen-Lun; XIE, Mei-Lin. Epigallocatechin gallate, the major component
of polyphenols in green tea, inhibits telomere attrition mediated cardiomyocyte apoptosis in
cardiac hypertrophy. International journal of cardiology, v. 162, n. 3, p. 199-209, 2013.
51. KLAIPS, Courtney L.; JAYARAJ, Gopal Gunanathan; HARTL, F. Ulrich. Pathways of
cellular proteostasis in aging and disease. Journal of Cell Biology, v. 217, n. 1, p. 51-63,
2018. 52. SYKIOTIS, Gerasimos P. et al. The role of the antioxidant and longevitypromoting
Nrf2
pathway in metabolic regulation. Current opinion in clinical nutrition and metabolic care, v.
14, n. 1, p. 41, 2011. 53. FAFIÁN-LABORA, Juan Antonio; O’LOGHLEN, Ana. Classical and
nonclassical
intercellular communication in senescence and ageing. Trends in Cell Biology, v. 30, n. 8, p.
628-639, 2020.

LÂMINA DE DIVULGAÇÃO

Clique no botão abaixo para fazer download da lâmina de divulgação

LITERATURA TÉCNICA DO FORNECEDOR

Clique no botão abaixo para fazer download do material do fornecedor