

INIBIDOR NATURAL DA FOME

A nova geração de estimulantes de GLP-1

4x mais saciedade Aumento de Akkermansia Modulação de grelina e leptina

Grau: Farmacêutico () Alimentício (x) Cosmético () Reagente P.A. ()

Uso: Interno (x) Externo ()

Especificação Técnica / Denominação Botânica: Fitocomplexo de capsaicinoides microencapsulados

Equivalência: Não aplicável.

Correção:

Teor: Não aplicável.

Umidade / perda por dessecação: Não aplicável.

Fórmula Molecular: Não aplicável.

Peso Molecular: Não aplicável.

DCB: Não aplicável. CAS: Não aplicável. INCI: Não aplicável.

Sinonímia: Não aplicável.

Aparência Física: Beadlets de cor marrom amarelado.

Composição: Fitoativo extraído dos frutos de Capsicum frutescens padronizado em 2% de fitocomplexo (capsaicina, dihidrocapsaicina, nordihidrocapsaicina) e microencapsulados.

Características Especiais

- Produtodeorigemnatural
- Gluten-free Vegano Kosher
- Halal Non-GMO Food-based
- Clean Label Processo
- water-based ISO 9001:2015

ISO

- 14001:2015 ISO 45001:2018

Aplicações

Propriedades:

- Redução do apetite ao promover sensação de saciedade por múltiplos mecanismos
- Regulação do metabolismo lipídico com aumento da taxa metabólica (termogênico)
- Aumento da temperatura corpórea
- Aumento do consumo de oxigênio
- Melhora do perfil lipídico
- Redução de marcadores inflamatórios

Indicações:

- Redução do apetite
- Melhora da compulsão alimentar
- Gerenciamento de peso
- Anti-inflamatório natural
- Pacientes resistentes as terapias convencionais com GLP-1 sintéticos
- Desmame após o uso de análogos de GLP-1

Via de administração/posologia ou concentração: Via oral, na dose 150 mg ao dia, após a refeição (cápsula nº 4 gastrorresistente).

Contraindicações: A administração oral de AKKERMAT®, nas doses recomendadas, apresenta boa tolerabilidade. Não deve ser utilizado em crianças, gestantes, lactantes e pacientes que apresentam doenças intestinais, úlcera gástrica, cistite crônica ede repetição, hemorroida e alérgicos a pimenta.

Observações Gerais: Não aplicável.

Farmacologia

MULTIPLOMECANISMO VIA ESTÍMULO DE GLP-1 E DE AKKERMANSIA, MODULAÇÃO DE GRELINA E LEPTINA E AÇÃO TERMOGÊNICA Mecanismo de Ação: AKKERMAT® é um complexo fitoativo, com tecnologia patenteada - desenvolvido a partir de frutos de Capsicum frutescens e padronizado em concentrações estratégicas de três compostos capsaicinoides complexados (capsaicina, dihidrocapsaicina e nordihidrocapsaicina) e posteriormente microencapsulados. **AKKERMAT®** tem capacidade redutora da fome ao estimular a saciedade devido ao aumento da liberação do GLP-1 (glucagon-like peptide-1) (Joseph et al., 2021b) e estímulo de Akkermansia muciniphila (Yue et al., 2022), além de propriedades moduladoras de grelina e leptina. AKKERMAT® age como um agonista do receptor de potencial transitório vaniloide subtipo 1 (TRPV1), o que lhe confere a capacidade de aumentar a termogênese e reduzir a lipogênese no tecido adiposo. É também capaz de aumentar os níveis do hormônio intestinal GLP-1 (glucagon-like peptide-1) e de modular grelina ("hormônio da fome) e leptina, portanto, tendo uma importância destacada na redução da fome. (Ludy et al., 2011; Wang et al., 2011; Gram et al., 2017). Além disso, age no estimulo de Akkermansia muciniphila via expressão aumentada de Muc2 e expressão de mRNA de Reg3g (Yue et al., 2022). AKKERMAT® possui destaque pelo mecanismo de estímulo de GLP-1, também estimulado pelo aumento de Akkermansia muciniphila, que traz alterações positivas na microbiota intestinal (Baboota et al., 2024). Este mecanismo regula diretamente a expressão do gene Muc2 da mucina 2 e do gene da proteína antimicrobiana Reg3g no intestino, acarretando o aumento de

células caliciformes (secretam mais componentes do muco) e aumento da secreção da proteína antibacteriana intestinal, que inibe bactérias patogênicas e, como consequência, aumenta a abundância desta bactéria benéfica. As células enteroendócrinas intestinais do tipo L desempenham um papel crucial no eixo intestino-cérebro. São capazes de detectar a presença de nutrientes, microbiota e metabólitos por meio de um receptor acoplado à proteína G (GPCR) e respondem secretando hormônios peptídicos intestinais, em associação com concentração intracelular elevada de cálcio (Ca2+), que sinaliza ao cérebro para regular a saciedade. (Shen et al., 2017; Si et al., 2022; Yue et al., 2022). A formulação de AKKERMAT® atrelada à sua tecnologia possibilita a produção de partículas coloidais submicronizadas dos componentes bioativos, com caráter mucoadesivo e melhor permeabilidade de membrana e, portanto, apresentando 19 vezes mais biodisponibilidade dos bioativos, entrega intestinal efetiva e sustentada (até 24 horas).

Suas principais atuações estão relacionadas abaixo, seguidas da representação esquemática na figura 1:

- Estímulo de *A. muciniphila*:
 - Promove o aumento de células caliciformes, que secretam mais componentes do muco A. muciniphila;
 - Aumento da secreção da proteína antibacteriana intestinal (Reg3g), que inibe bactérias patogênicas, aumentando a abundância de A. muciniphila; Aumento do hormônio GLP-1 pelo intestino, que sinaliza a saciedade ao cérebro
- Estímulo direto de GLP-1 e modulação de hormônios do apetite:
 - Inibição de glucagon e estímulo da transcrição do gene da insulina, biossíntese e secreção da insulina (GLP-8
 - 0
 - Redução da grelina 0 Aumento da leptina Melhora do perfil lipídico
- Ação na termogênese:
 - Aumento da temperatura corpórea
 - 0 Aumento do consumo de oxigênio
- Anti-inflamatório natural:
 - Inibição de fatores de transcrição, como NFkB (fator nuclear Kappa B)
 - Ativação de PPARy (receptores ativados por proliferadores de peroxissoma do tipo gama)

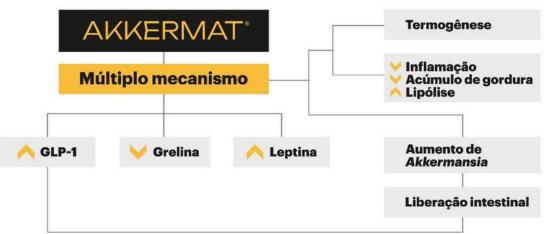


Figura 1. Múltiplo mecanismo de ação de AKKERMAT® para promoção da saciedade e perda de peso (adaptado de SANATI et al., 2018; SI et al., 2022).

Referências Científicas

Composição química

CAPSAICINOIDESECAPSINOIDES

Os principais capsaicinoides naturais, consistem em capsaicina, dihidrocapsaicina, nordihidrocapsaicina, entre outros. Estes componentes exercem múltiplos efeitos farmacológicos e fisiológicos, incluindo as atividades analgésica, anti-inflamatória, antioxidante e antiobesidade. Portanto, os capsaicinoides apresentam valor potencial na clínica, principalmente para a perda de peso. Além disso, os capsaicinoides também apresentam benefícios no sistema cardiovascular e gastrointestinal. Seu mecanismo é demonstrado por efeitos agonistas no receptor de potencial transitório vaniloide subtipo 1 (TRPV1) de capsaicina. Além de poderem exercer os efeitos não apenas pela via dependente do receptor, mas também pela via independente do receptor. Há também os capsinoides, que são compostos não pungentes relacionados à capsaicina, derivados de todas as variedades do gênero Capsicum. Capsiato, dihidrocapsiato e nordihidrocapsiato diferem dos capsaicinoides, pois as duas porções de suas moléculas são conectadas por ligação éster em vez de ligação amida. No entanto, os capsaicinoides (vanililamidas de ácidos monocarboxílicos) são considerados os principais bioativos nos frutos das plantas (Batiha et al., 2020; Luo et al., 2011). A figura 2 demonstra as estruturas moleculares, com destaque para os capsaicinoides de AKKERMAT®.

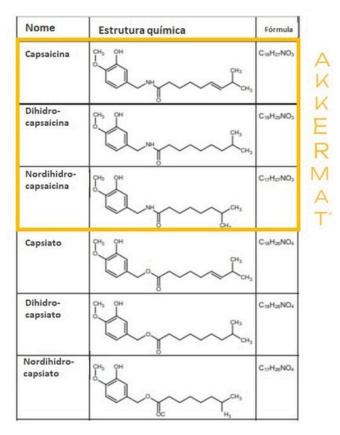


Figura 2. Diferenças estruturais entre os capsaicinoides e os capsinoides. Adaptado deLUO et al., 2011.

Capsaicinoides e capsinoides são absorvidos passivamente na porção superior do intestino delgado e se ligam com alta afinidade ao receptor TRPV1. Dados farmacológicos sugerem que a capsaicina é inicialmente mais estável que o capsiato, que é clivado mais cedo e não é detectável na circulação portal. As diferenças na pungência percebida da capsaicina e do capsiato estão relacionadas ao local de ativação do TRPV1. A capsaicina ativa os receptores TRPV1 em neurônios localizados na língua, enquanto o capsiato é hidrolisado ao atravessar a mucosa oral, tornando-o um estímulo sensorial ineficaz. Tanto a capsaicina quanto o capsiato têm potencial para ativar os receptores TRPV1 no intestino, levando a aumentos semelhantes na ativação do sistema nervoso simpático (SNS). Estudos científicos apresentam maior embasamento e resultados positivos nos capsaicinoides quando se trata aos efeitos no apetite, em segundo, na termogênese. Diferente dos capsaicinoides, os capsinoides não apresentam resultados consistentes na redução do apetite, apenas para o aumento da termogênese via aumento do gasto energético (Ludy et al., 2012).

TECNOLOGIA de revestimento Os efeitos na saúde de ingredientes contendo capsaicinoides têm sido anunciados na medicina tradicional há séculos, mas sua pungência, notada como uma queimadura sensorial, e propensão para provocar efeitos colaterais gastrointestinais podem limitar o consumo em muitos indivíduos. A tecnologia de microencapsulação pode ser usada como uma plataforma para a entrega simultânea de vários fitonutrientes/fitocomplexos, a partir de microesferas individuais, como representado na figura 3 (microbeadlets) (Abhilash, et al., 2021; Joseph et al., 2022).

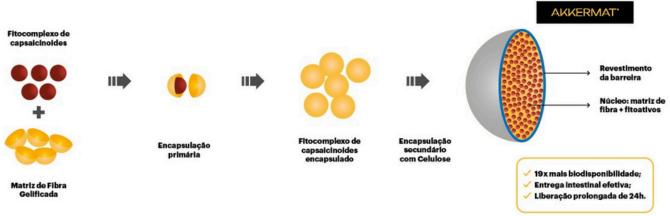


Figura 3. Processo de produção de microbeadlets. Adaptado do Material do Fornecedor, 2023.

Além disso, os microbeadlets são revestidos por duas camadas funcionais, permitindo uma liberação reduzida/lentados ativos e mais eficiente. No caso de AKKERMAT®, a técnica possibilitou utilizar um fitocomplexo de capsaicinoides, sem desconfortos gastrointestinais e com entrega efetiva intestinal.

ENTREGA INTESTINAL SUSTENTADA DE FITOCOMPLEXO RICO EM CAPSAICINOIDES (AKKERMAT®) COM **BIODISPONIBILIDADE APRIMORADA**

Apesar dos efeitos farmacológicos benéficos à saúde, a baixa biodisponibilidade oral, a meia-vida curta e a falta de formas seguras de administração oral limitam o uso funcional e terapêutico dos capsaicinoides. Em estudo pré-clínico de biodisponibilidade, AKKERMAT® apresentou cerca de 19 vezes mais concentração plasmática (Figura 4A) do fitocomplexo de capsaicinoides, em comparação ao extrato convencional (JOSEPH et al., 2021a). Além da alta biodisponibilidade, a tecnologia favorece a liberação prolongada em pH próximo à neutralidade, como ocorre no intestino (Figura 4B), protegendo a mucosa gástrica de efeitos relacionados ao contato direto. A maior biodisponibilidade e entrega efetiva de

AKKERMAT® permitem que seus componentes sejam entregues em elevadas e seguras concentrações, no local adequado de absorção (intestinal), possibilitando seu múltiplo mecanismo de ação (JOSEPH et al., 2021a).

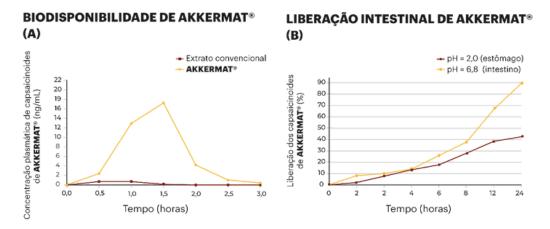


Figura 4. Diferenciais da tecnologia sobre a biodisponibilidade (A) e liberação intestinal dos ativos de AKKERMAT@B) (JOSEPH et al., 2021a).


Estudo clínico com AKKERMAT®

INFLUÊNCIA DE AKKERMAT® EM INDIVÍDUOS COM EXCESSO DE PESO: ESTUDO RANDOMIZADO, DUPLO-CEGO E CONTROLADO POR PLACEBO

Em estudo clínico duplo cego e randomizado, indivíduos com sobrepeso e obesidade foram tratados por 28 dias com o placebo e AKKERMAT®. A influência de AKKERMAT® no comportamento alimentar e no apetite foi acompanhada por Three-Factor Eating Questionnaire (TFEQ) e Council of Nutrition Appetite Questionnaire (CNAQ), respectivamente. A análise TFEQ e CNAQ revelou uma melhora significativa na alimentação descontrolada e redução do apetite entre os indivíduos, com destaque em redução da restrição cognitiva (preocupação constante em comer), alimentação descontrolada e alimentação emocional. Além da melhora cognitiva e comportamental na compulsão alimentar, foi observado redução de 2kg e do índice de massa corporal devido ao aumento da saciedade e melhora dos comportamentos alimentares, por mecanismos multialvo (JOSEPH et al., 2021b). O estudo demonstrou ainda a segurança e tolerabilidade de AKKERMAT® na dosagem experimental. Diante de todos os levantamentos, AKKERMAT® mostra-se como um aliado natural para o emagrecimento sem efeitos colaterais ou rebote, proporcionando resultados duradouros, nas doses indicadas (Figura 5):

CONTROLE DO APETITE COM MELHORA DOS SINTOMAS:

REDUÇÃO DE PESO Dia zero (antes do tratamento) Peso corporal (Kg) 86 28 dias de tratamento 82 80 RESULTADOS EM 28 DIAS 78 76 74 72 Placebo **AKKERMAT®**

Figura 5. Pontuação da análise TFEQ-R18 (Three Factors Eating Questionnaire): Restrição cognitiva, alimentação descontrolada e alimentação emocional com redução de peso em 28 dias (JOSEPH et al., 2021b).

AKKERMAT® NA MODULAÇÃO SEGURA DO EQUILÍBRIO ENERGÉTICO E DESEMPENHO DE RESISTÊNCIA: UM ESTUDO RANDOMIZADO, DUPLO-CEGO, CONTROLADO POR PLACEBO.

Estudo randomizado, duplo-cego, controlado por placebo com três braços e três sequências, 105 participantes saudáveis com sobrepeso foram randomizados para receber placebo e outras duas doses de AKKERMAT® por 28 dias. O gasto energético, a oxidação de gordura e a resistência foram medidos usando o sistema Quark C-PET. O teste de exercício cardiopulmonar (C-PET) foi conduzido em uma esteira com os participantes se exercitando em uma velocidade auto selecionada. AKKERMAT® demonstrou uma resposta dose-dependente na perda de peso, chegando a uma redução expressivas de até 4,5 kg após os 28 dias de tratamento (Figura 6).

Figura 6. Influência de AKKERMAT® na redução de peso em tratamento realizado por 28 dias aliado ao exercício físico (JOSEPH et al., 2021b; Roopashree et al., 2024).

Ainda, AKKERMAT® demonstrou uma resposta dose-dependente ao aumento do gasto energético e oxidação de ácidos graxos (importantes para manutenção do peso e produção de energia), e em ambas as doses de AKKERMAT® foi possível observar um aumento no tempo até a exaustão, indicando um desempenho de resistência aprimorado com o uso do fitoativo (Roopashree et al., 2024).

PACIENTES RESISTENTES AS TERAPIAS CONVENCIONAIS COM ANÁLOGOS DE GLP-1 SINTÉTICOS Análogos de GLP1,

exercem efeito mimético a ação do GLP1, são utilizados para aumentar os níveis de GLP1 e melhorar o controle glicêmico em pacientes com diabetes tipo 2. Ainda, esses medicamentos também têm apresentado um efeito

positivo no tratamento da obesidade e sobrepeso. Nossas combinações genéticas podem facilitar ou dificultar a perda de peso, mesmo quando utilizado agonistas de GLP-1. O gene TCF7L2, por exemplo, é um dos genes mais estudados em relação ao diabetes tipo 2 e à resposta aos agonistas de GLP1. Sua alteração genética pode diminuir a ação terapêutica relacionada à perda de peso e glicemia, mesmo com o uso de agonistas de GLP-1. O mesmo ocorre com o gene GLP1R, que codifica o receptor do peptídeo-1 semelhante ao glucagon (GLP1) e é o alvo principal destes fármacos no tratamento do diabetes tipo 2 e obesidade. A alteração deste gene em particular, pode levar a redução na resposta terapêutica relacionada à perda de peso e glicemia. Além disso, o gene CNR1 codifica o receptor de canabinoides tipo 1 (CB1), que é um receptor presente no sistema endocanabinoide, desempenhando um papel importante na regulação de diversas funções fisiológicas, incluindo o metabolismo energético, a regulação do apetite e a homeostase da glicose. Quando alterado este gene, ocorre a diminuição da ação terapêutica relacionada à glicemia. As particularidades de cada indivíduo, devido (ou não) a alterações genética, mostra que AKKERMAT® pode ser uma escolha interessante de tratamento para estes casos em particular.

Estudos pré-clínicos com AKKERMAT®

SEGURANÇA DE AKKERMAT® A segurança foi avaliada por via oral em modelo experimental de toxicidade aguda, com

administração única das doses de

300, 2000 e 5000 mg/kg), com os grupos sendo observados por 14 dias. Já nos estudos de toxicidade subcrônica, foram administradas as doses de 250, 500 e 1000 mg/kg. Nenhum dos grupos de animais pertencentes aos tratamentos agudo e subcrônico produziu qualquer efeito adverso nos parâmetros hematológicos/bioquímicos quando comparados ao controle. Entretanto, observou-se diminuição do peso corporal entre os grupos tratados nas doses de 500 e 1000 mg/kg. A autópsia terminal não revelou nenhuma alteração no peso relativo do órgão, exceto para a alta dose tratada, onde foi observado um aumento no peso do fígado e do rim e a histopatologia de todos os animais foi considerada normal. Assim, o nível baixo de efeito adverso observado (LOAEL) de AKKERMAT® foi determinado para 500 mg/kg/dia (Joseph et al., 2020).

Experimentos	Resultados
Toxicidade aguda (administrações únicas em diferentes	Dose letal média (DL50) maior que 5000 mg/kg
doses e observação até 14 dias)	
Toxicidade subcrônica (administrações repetidas em	Low-observed-adverse-effect level (LOAEL) = 500 mg/kg
diferentes doses por 90 dias)	

Efeitos Adversos: Nenhum evento adverso foi relatado durante os estudos nas doses indicadas.

*Material destinado ao profissional da saúde (médico, nutricionista, farmacêutico).

Farmacotécnica

Estabilidade (produto final): Não encontrado nas referências bibliográficas pesquisadas.

pH Estabilidade (produto final): Não encontrado nas referências bibliográficas pesquisadas.

Solubilidade: Água e etanol.

Excipiente / Veículo Sugerido / Tipo de Cápsula: Preferencialmente excipiente manitol ou isomalte (vide arquivo "Técnicas de Manipulação Akkermat".

Orientações Farmacotécnicas: O produto não deve ser triturado ou quebrado ou manuseado em equipamentos que venham a romper ou comprometer seu microencapsulamento. O produto não deve ser associado NA MESMA CÁPSULA, deve ser manipulado de maneira isolada, a fim de se manter a integridade do microencapsulamento. Utilizar a cápsula 4 gastrorresistente, neste caso, sem a necessidade de uso de excipientes; para reduzir a eletrostática do produto, polvilhar talco farmacêutico ao manipular.

Compatibilidades (para veículos): Não aplicável.

Capacidade de Incorporação de Ingredientes Farmacêuticos (para veículos): Não aplicável.

Incompatibilidades: Qualquer material que apresente incompatibilidades com celulose e feno-grego.

Conservação / Armazenamento do insumo farmacêutico definido pelo fabricante: Armazenar em local seco e fresco, protegido da luz, calor e oxidação. A temperatura de armazenamento recomendada é a ambiente.

Conservação / Armazenamento do produto final definido pelo farmacêutico RT da farmácia: De acordo o critério de conservação do insumo definido pelo fabricante, sugerimos conservar o produto final em recipiente fechado, em local seco e fresco, protegido de luz, calor e oxidação, porém cabe também avaliação farmacêutica conforme a formulação, sistema conservante e condições do produto.

Formulações

Uso Oral

Saciedade e estímulo de GLP-1	
Akkermat®	150 mg
Capsula número 4 gastrorresistente	1 cápsula
Posologia: Ingerir uma dose ao dia, após a re	feição.

Referências

- 1. Material do fornecedor, 2023.
- 2. Abhilash, M. B., Kumar, D., Deepti A., Nair, A., Greet, V., An-Katrien, V., Mieke, V. D. D., Das Sivadasan, S., Maliakel, B., Chakrapani B., Madhavamenon, K. I. (2021). Enhanced absorption of curcuminoids and 3-Acetyl-11-keto-βboswellic acid from fenugreek galactomannan hydrogel beadlets: A natural approach to the co-delivery of lipophilic phytonutrients. Journal of Functional Foods, 79, 104405.
- Baboota, R. K., Murtaza, N., Jagtap, S., Singh, D. P., Karmase, A., Kaur, J., ... & Bishnoi, M. (2014). Capsaicin-induced transcriptional changes in hypothalamus and alterations in gut microbial count in high fat diet fed mice. The Journal of Nutritional Biochemistry, 25(9), 893-902.

- 4. Batiha, G. E., Algahtani, A., Ojo, O. A., Shaheen, H. M., Wasef, L., Elzeiny, M., Ismail, M., Shalaby, M., Murata, T., Zaragoza-Bastida, A., Rivero-Perez, N., Magdy-Beshbishy, A., Kasozi, K. I., Jeandet, P., Hetta, H. F. (2020). Biological properties, bioactive constituents, and pharmacokinetics of some Capsicum spp. and capsaicinoids. Int J Mol Sci.;21(15), 5179.
- 5. Gram, D. X., Holst, J. J., & Szallasi, A. (2017). TRPV1: a potential therapeutic target in type 2 diabetes and comorbidities? Trends in Molecular Medicine, 23(11), 1002-1013.
- 6. Joseph, A., Johannah, N. M., Kumar, S., Maliakel, B., & Krishnakumar, I. M. (2020). Safety assessment of a fenugreek dietary fiber-based formulation of capsaicinoids-rich red chili extract (Capsifen®): Acute and sub-chronic studies. Toxicology Reports, 7, 602-609.
- 7. Joseph, A., Balakrishnan, A. M., Mulakal, J. N., Sivadasan, S. D., Mohan, R., Maliakel, B., & Madhavamenon, K. I. (2021a). A green approach for the sustained-intestinal delivery of red chili (Capsicum annum L) extracted capsaicinoids with enhanced bioavailability. Journal of Functional Foods, 85, 104658.
- 8. Joseph, MSc, A., John, PhD, F., Thomas, MSc, J. V., Sivadasan, S. D. P., Maliakel, PhD, B., Mohan, PhD, R., & IM, K. (2021b). Influence of a novel food-grade formulation of red chili extract on overweight subjects: randomized, double-blinded, placebo-controlled study. Journal of Dietary Supplements, 18(4), 387-405.
- 9. Joseph, A., Shanmughan, P., Balakrishnan, A., & Maliakel, B. (2022). Enhanced Bioavailability and Pharmacokinetics of a Natural Self-Emulsifying Reversible Hybrid-Hydrogel System of Quercetin: A Randomized Double-Blinded Comparative Crossover Study. ACS omega.
- 10. Roopashree, N., Syam, D. S., Krishnakumar, I. M., Mala, K. N., Fleenor, B. S., & Thomas, J. (2024). A natural sustainedintestinal release formulation of red chili pepper extracted capsaicinoids (Capsifen®) safely modulates energy balance and endurance performance: a randomized, double-blind, placebo-controlled study. Frontiers in Nutrition, 11, 1348328.
- 11. Ludy, M. J., & Mattes, R. D. (2011). The effects of hedonically acceptable red pepper doses on thermogenesis and appetite. Physiology & Behavior, 102(3-4), 251-258.
- 12. Ludy, M. J., Moore, G. E., & Mattes, R. D. (2012). The effects of capsaicin and capsiate on energy balance: critical review and meta-analyses of studies in humans. Chemical senses, 37(2), 103-121.
- 13. Luo, X. J., Peng, J., & Li, Y. J. (2011). Recent advances in the study on capsaicinoids and capsinoids. European Journal of Pharmacology, 650(1), 1-7.
- 14. Sanati, S., Razavi, B. M., & Hosseinzadeh, H. (2018). A review of the effects of Capsicum annuum L. and its constituent, capsaicin, in metabolic syndrome. Iranian Journal of Basic Medical Sciences, 21(5), 439.
- 15. Shen, W., Shen, M., Zhao, X., Zhu, H., Yang, Y., Lu, S., ... & Le, S. (2017). Anti-obesity effect of capsaicin in mice fed with high-fat diet is associated with an increase in population of the gut bacterium Akkermansia muciniphila. Frontiers in Microbiology, 8, 272.
- 16. Si, J., Kang, H., You, H. J., Ko, G. (2022). Revisiting the role of Akkermansia muciniphila as a therapeutic bacterium. Gut Microbes, 14(1), 2078619.
- 17. Smeets, A. J., & Westerterp-Plantenga, M. S. (2009). The acute effects of a lunch containing capsaicin on energy and substrate utilisation, hormones, and satiety. European journal of nutrition, 48, 229-234.
- 18. Wang, P., Liu, D., Zhu, Z. (2011). Transient receptor potential vanilloid type-1 channel in cardiometabolic protection. Journal of the Koren Society of Hypertension, 17(2), 37-47.
- 19. Wang, P., Yan, Z., Zhong, J., Chen, J., Ni, Y., Li, L., ... & Zhu, Z. (2012). Transient receptor potential vanilloid 1 activation enhances gut glucagon-like peptide-1 secretion and improves glucose homeostasis. Diabetes, 61(8), 2155-2165.

- 20. Whiting, S., Derbyshire, E., Tiwari, B. K. (2012). Capsaicinoids and capsinoids. A potential role for weight management? A systematic review of the evidence. Appetite, 59(2), 341-348.
 - 21. Yue, C., Chu, C., Zhao, J., Zhang, H., Chen, W., & Zhai, Q. (2022). Dietary strategies to promote the abundance of intestinal Akkermansia muciniphila, a focus on the effect of plant extracts. Journal of Functional Foods, 93, 105093.

TÉCNICAS DE MANIPULAÇÃO

AKKERMAT®

- Akkermat® 150 mg em cápsulas detamanho variado
- Akkermat® 150 mg em cápsulas combo e dual-release

^{*}Material destinado ao farmacêutico/profissional responsável pela manipulação dos ativos.

AKKERMAT® 150 mg em cápsula de tamanho variado

INSUMO	CONCENTRAÇÃO (%)	FEQ/ FC	FUNÇÃO	FORNECEDOR	QUANTIDADE
Akkermat®	150 mg	**	Ativo	Florien	A quantidade de MP deve ser definida de acordo com o número de cápsulas a ser aviado.
Manitol*	qs	**	Excipiente		Quantidade necessária do excipiente de acordo com o tamanho da cápsula a ser usada
Álcool Absoluto	qs	**	Aglutinante		qs

^{*}O Manitol poderá ser substituído por isomalte (pó).

Equipamentos & utensílios: Balança eletrônica de precisão; gral e pistilo, placa de encapsular; estufa de secagem.

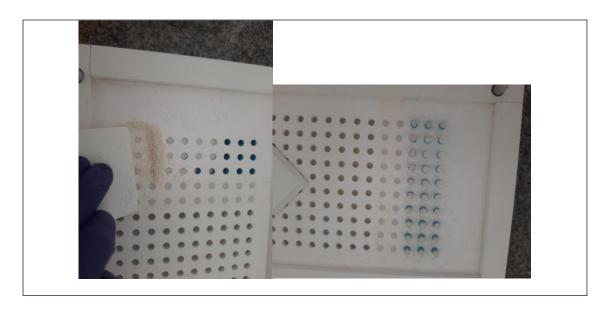
PROCEDIMENTO DE PREPARO Passo 1: Calcular e pesar com precisão cada ingrediente requerido para a

quantidade total a ser preparada.

Passo 2: Misturar, sem triturar, o manitol com os grânulos do Akkermat®. O produto não misturará completamente nessa fase, devido a diferença de granulometria com o excipiente utilizado. Contudo, esse problema será contornado no passo 03.

Passo 3: Umedecer a mistura anterior com qs de álcool (quantidadesuficiente para molhar o manitol presente na mistura, sem triturar). Homogeneizar bem. Não triturar os grânulos. A mistura com quantidade suficiente de álcool absoluto minimiza a segregação dos grânulos em relação à mistura com o excipiente na forma de pó e permite dessa forma a obtenção de uma mistura homogênea. O álcool

absoluto, evapora-se totalmente com a secagem, não interferindo na composição ou estabilidade da formulação.



Passo 4: Secar a mistura em estufa (40°C) com circulação de ar oudeixar secar em temperatura ambiente. Caso utilize estufa de secagem estática, deixar a porta daestufa entreaberta durante o período de secagem.

Passo 5: Após a secagem, misturar novamente para reduzir os grumos dos pós e proceder com o processo de encapsulação. A quantidade da mistura obtida será suficiente para o completo preenchimento de cápsulas tamanho número 3.

EMBALAGEM RECOMENDADA/CONDIÇÕES DE ARMAZENAMENTO	VALIDADE
Pote para cápsulas ou blister.	ND


OBSERVAÇÕES/NOTAS ADICIONAIS/PRECAUÇÕES E ADVERTÊNCIAS

Não substituir os excipientes recomendados nesse procedimento por outro, pois poderá afetar o resultado obtido.

DESCRIÇÃO FÍSICA DO PRODUTO

Características organolépticas (cor, odor, aspecto): Pó granulado de coloração amarelada.

Recipiente de fechamento usado para o composto acabado: OK

Akkermat®150 mg em cápsulas combo e dual-release (cápsula-emcápsula)

Introdução

Cápsulas combo e cápsulas dual- releasena farmacoterapia e na suplementação nutricional

Medicamentos individualizados e suplementos nutricionais preparados na forma de cápsulas são comumente formulados e dispensados pelas farmácias magistrais. A popularidade das cápsulas duras deve-se a sua ampla versatilidade em relação a composição, cor, tamanho, tipos físicos de preenchimento possíveis, diferentes possibilidades de perfis de liberação e possíveis vias de administração. A tabela 1 abaixo descreve algumas das diferentes possibilidades do uso das cápsulas duras.

Tabela 1. Versatilidade de usos das cápsulas duras:

Há um interesse renovado na aplicação da tradicional tecnologia cápsula-em-cápsula (preenchimento de uma cápsula com outra de menor tamanho) no preparo de cápsulas combo (contendo formulações composições qualitativamente diferentes em cada cápsula) e dual-release (contendo formulações com perfis de liberação diferentes em cada cápsula). Essas formas farmacêuticas diferenciadas e patient-friendly vêm sendo frequentemente solicitadas por profissionais prescritores com o objetivo de otimizar e aumentar a aderência aos tratamentos medicamentosos e nutricionais de seus pacientes. O diferencial dessas preparações reside no processo de preparo cápsula-em-cápsula, onde é possível ter dois perfis de liberação diferentes em uma única formulação final. Por exemplo, em uma única formulação na forma de cápsula pode se obter uma liberação imediata e uma liberação modificada do fármaco (retardada e/ou lenta). É também possível o preparo de uma única formulação contendo formulações com ingredientes com diferentes granulometrias e formas físicas de formulações (ex. pó e pellets, pó e grânulos, pó e mini comprimido, óleo e pó, óleo e pellets). Na tabela 2 são mencionados os preenchimentos possíveis em formulações cápsulas-emcápsulas:

Tabela 2. Tipos de preenchimento possíveis em combinações cápsulas-em-cápsulas (cápsula externa/cápsula interna):

Vantagens das cápsulas dual-release e cápsulas combo

- Permite o preenchimento multifásico (pós, grânulos, pellets, beadlets, massas fundidas, cápsulas, mini comprimidos e outros). Permite veicular insumos incompatíveis em uma única formulação. Possibilidade de uso
- de múltiplos tipos de cápsula (ex. cápsula de gelatina + cápsula HPMC, cápsula de pullulan + cápsula de HPMC,
- cápsula de liberação imediata + cápsula de liberação modificada). Possibilidade de múltiplos perfis de liberação em uma única formulação (liberação imediata + liberação
- retardada ou entérica, liberação imediata + liberação lenta e liberação imediata + controlada.
 - Obtenção de terapias únicas, permitindo a combinação de insumos ativos direcionados ao tratamento de uma
- determinada patologia combinado com outro ativo usado para minimização de efeitos adversos causados pelo
 - Redução da quantidade de excipiente necessária para o preenchimento da cápsula externa.
- Aumento da estabilidade de alguns insumos ativos críticos, por possibilidade de utilização de excipientes
- lipídicos anidros contendo sistema antioxidante.
- Possibilidade da redução da freguência de administração.
- Redução do número de medicamentos administrados.
- Administração de medicamentos na sequência ideal.
- Prevenção da necessidade de administração noturna de medicamento durante o período de sono.
- Redução da irritação gástrica e efeitos adversos (ex. doxiciclina dual-release).
- Redução da flutuação e nível circulante do fármaco (ex. combinação da cápsula de liberação imediata e
- Redução de possíveis efeitos adversos decorrentes de picos plasmáticos (combinação de cápsulas com de
- liberação imediata e lenta, esta última estendendo o tempo de liberação do fármaco dentro de sua janela terapêutica).

- Aumento da adesão do paciente ao tratamento pela maior conveniência e simplificação da administração do
- medicamento.

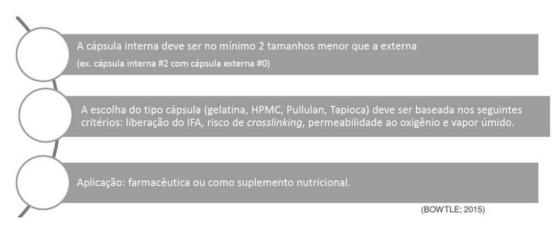
Criar uma resposta psicológica positiva devido ao apelo visual e inovativo da formulação.

As cápsulas dual-release apresentam como principais vantagens a possibilidade de redução da frequência de administração, prevenção da necessidade de administração noturna durante o período de sono, redução da flutuação/variabilidade do nível circulante do fármaco, redução de efeitos adversos decorrentes de picos plasmáticos, aumento da biodisponibilidade e aumento da adesão do paciente ao tratamento pela maior conveniência e simplificação da administração. Entre os ingredientes mais comumente solicitados como cápsulas dual-release, inclui-se a melatonina com dois diferentes perfis de liberação em uma única formulação (liberação imediata + liberação lenta). As cápsulas combo por sua vez permitem a combinação de duas formulações de composições distintas e/ou com características físicas diferentes em uma única preparação. Por exemplo, uma preparação combinando uma formulação na forma de pó na cápsula externa e pellets na cápsula interna.

Tabela 3. Exemplos de formulações e excipientes sugeridos:

Formulação	Cápsulaexterna	Cápsula interna
Melatonina Dual Release 5 mg 70/3 0 60/4 0 50/5 0	3,5mg (70% da dose de liberação imediata) 3mg (60% da dose de liberação imediata) 2,5mg (50% da dose de liberação imediata) Tipo de cápsula: cápsula de gelatina, cápsula vege cápsula de pullulan ou tapioca. Excipiente: DiluCap® SLD	1,5mg (30% da dose de liberação modificada) 2mg (40% da dose de liberação modificada) 2,5mg (50% da dose de liberação modificada) <i>Tipo de</i> etatápsula:cápsula de liberação retardada ou entérica. <i>Excipiente</i> :DiluCap®SR (liberação lenta).
Hidrocortisona <i>Dual Release</i> 10mg 70/30 50/50	7mg (70% da dose de liberação imediata) 5mg (30% da dose de liberação imediata) Tipo de cápsula: cápsula de gelatina, cápsula vegetal, cápsula de pullulan ou tapioca. Excipiente: DiluCap® SLD 30mg (75% da dose de liberação	Tipo de cápsula: cápsula de liberação retardada ou entérica. Excipiente:DiluCap®SR (liberação lenta). 10mg (25% da dose de liberação retardada
Doxiciclina <i>Dual release</i> 40mg	imediata) Tipo de cápsula: cápsula de gelatina, cápsula vegetal, cápsula de pullulan ou tapioca. Excipiente: DiluCap® SLD T4 (levotiroxina) (liberação imediata) Tipo de cápsula: cápsula de gelatina, cápsula vegetal, cápsula de pullulan ou	ou enterica) <i>Tipo de capsula:</i> capsula de liberação retardada ou entérica. <i>Excipiente:</i> DiluCap®SR ou DiluCap® SLD T3 (liotironina) (liberação lenta) <i>Tipo de cápsula:</i> cápsula de liberação retardada ou
T4 + T3 Combo (doses variáveis)	tapioca. Excipiente: DiluCap® SLD Cetoprofeno (liberação imediata) Tipo de cápsula: cápsula de gelatina, cápsula vegetal, cápsula de pullulan ou tapioca. Excipiente: DiluCap® SLD Dutasterida	lenta). Omeprazol pellets de liberação entérica Tipo de cápsula: cápsula de gelatina, cápsula vegetal, cápsula de pullulan
Compo	0,5mg (liberação imediata) Tipo de cápsula: PPESPSULA de gelatina, cápsula vegetal, cápsula de pullulan ou tapioca. Excipiente: DiluCap® PSD UC-II 40mg Tipo de cápsula: cápsula de gelatina, cápsula vegetal, cápsula de pullulan ou tapioca	de dosador calibrado) Tansulosina 0,2mg (liberação retardada)
Dutasterida 0,5mg + Tansulosina 0,2 Combo	Pm@#00). Excipiente: DiluCap® PSD Probióticos (composição e doses variáveis) Tipo de cápsula: cápsula de gelatina, cápsula vegetal, cápsula de pullulan ou tapioca (#00). Excipiente: DiluCap®	Tipo de cápsula:cápsula de liberação retardada entérica.
UC-II@0mg + Biosa@0mg Combo	Hygro	Biosil® 390mg grânulos Tipo de cápsula: cápsula de gelatina, cápsula vege cápsula de pullulan ou tapioca (#1) Excipiente: não empregado (cápsula # 1 preenchidatotalmente com os grânulos do Biosil®=390mg) Corebiome® 300mg beadlets
Probióticos + Corebiome® 300mg C	OMDO	Tipo de cápsula:cápsula de liberação retardada ou entérica. Excipiente: não empregado (cápsula # 1 preenchid: totalmente com beadlets de Corebiomel® = 300mg

Manipulação de cápsulas dual-release


a) Escolha das cápsulas internas e externas

O tipo e o tamanho das cápsulas a serem combinados no sistema cápsula-em-cápsula devem ser previamente definidos antes da preparação do produto em função das características de estabilidade e compatibilidade do(s) insumo(s) ativo(s) e excipientes, do perfil ou perfis de liberação desejados e do perfil alvo do medicamento/suplemento.

Os seguintes critérios devem ser observados:

Para a manipulação da cápsula dual-release da cápsula interna é recomendado que ela seja gastrorresistente ou de liberação retardada, evitando-se que as formulações com perfis de liberação diferentes entre si se desintegrem no mesmo tempo. A cápsula externa, por sua vez, deve ser sempre de liberação imediata.

No preparo da cápsula combo é possível combinar ambas as cápsulas de liberação imediata quando a razão da combinação das formulações em diferentes cápsulas esteja relacionada exclusivamente à granulometria e o perfil de liberação imediato é desejado para as mesmas. Todavia, cápsulas combo são preparadas com a combinação de uma cápsula externa de liberação imediata e a cápsula interna de liberação retardada quando um perfil de liberação modificado é desejado para uma das formulações. Em ambas as situações, a cápsula externa deverá sempre ser de liberação imediata.

A cápsula interna por razão dimensional deverá ter o tamanho menor que a cápsula externa. A cápsula interna deverá ser pelo menos dois números menores que a cápsula externa para que haja volume remanescente suficiente na cápsula externa para possibilitar o acondicionamento da formulação a ser preenchida na mesma. Uma combinação usualmente empregada é a combinação da cápsula interna número 3 com cápsula externa número 00. A tabela 4 relaciona as combinações possíveis de tamanhos de cápsulas em sistema cápsula-em-cápsula.

Tabela 4. Combinações de cápsulas possíveis em sistemas cápsula-em-cápsula (cápsulas Combo):

dual-release e

Cápsulainterna (tamanho) #000	Cápsula externa #000 N/A N/A X	Cápsula externa #00 N/A N/A N/A	a # 0 N/A	Cáp sul ex ter na a #1 N/A	a #2 N/A
# 00 # 0 # 1 # 2	NR NR NR NR		N/A N/A	N/A N/A	N/A N/A
#3#4			N/A	N/A N/A	N/A N/A N/A X
					IN/A A
		Х			
		X	Χ		
		Х	Х	Х	
		X	X	Х	

= tamanho/número da cápsula.

X= combinação possível.

N/A: combinação não aplicável.

NR = combinação não relacionada na graduação da MedCaps®Duo

A escolha do tipo de cápsula é igualmente importante. Formulações como misturas de pós contendo ativos higroscópicos apresentam-se mais estáveis em cápsulas de HPMC, as quais são menos sensíveis a umidade. Ativos susceptíveis à oxidação, por sua vez estarão mais protegidos em cápsulas menos permeáveis ao oxigênio, como cápsulas de gelatina, tapioca ou Pullulan.

b) Escolha do excipiente

No preparo de cápsulas dual-release ou combo contendo formulação sólida (mistura de pós) na cápsula externa é essencial que a mesma apresente uma granulometria de pó fino para que se obtenha uniformidade de peso no final do processo de preparo. A linha de excipientes DiluCap® apresenta a granulometria fina e ideal para o preparo desses tipos de formulações. A escolha do excipiente deve ser orientada segundo critério técnico em função das características intrínsecas do IFA (ex. classificação biofarmacêutica, compatibilidade com excipiente).

Excipientes líquidos de natureza lipídica são também comumente empregados no preparo de cápsula dualrelease ou combo com o objetivo de melhorar a biodisponibilidade de fármacos pouco solúveis, estabilidade ou uniformidade de conteúdo de fármacos potentes empregados em baixas doses.

Como exemplo, podemos citar uma formulação usualmente preparada de cápsula dual-release (liberação imediata + liberação lenta) que envolve a combinação de cápsula interna número 1 com cápsula externa número 00. A formulação da cápsula interna é preparada normalmente pelo processo tradicional de encapsulação, utilizando uma cápsula de liberação retardada (Release Capsule®) e um excipiente para liberação lenta (DiluCap®SR). A cápsula externa deve ser de liberação imediata (cápsula de gelatina ou cápsula vegetal comum) e o excipiente também deverá favorecer a liberação imediata. A escolha do excipiente deve ser orientada segundo critério técnico em função das características intrínsecas do IFA (ex. classificação biofarmacêutica, compatibilidade com excipiente), podendo ser empregado por exemplo o DiluCap®SLD ou DiluCap®PSD.

Outras combinações de tamanhos de cápsulas e tipos formulações de formulações encapsuladas na cápsula interna e externa também são possíveis, conforme mencionado anteriormente.


c) Determinação da quantidade de excipiente necessária para o preenchimento da cápsula externa

O processo de preenchimento de cápsulas duras em preparações farmacêuticas é tradicionalmente realizado pelo método volumétrico, onde a quantidade pesada de ingrediente(s) ativo(s) é misturada com uma quantidade suficiente de excipiente necessária para o preenchimento do volume do corpo da cápsula, variando em função do volume ocupado pela dose do(s) ingrediente(s) ativo(s) e em relação ao tamanho da cápsula utilizada. Os volumes dos diversos tamanhos de cápsulas disponíveis são conhecidos e servem de base para o cálculo da quantidade de excipiente necessária para o respectivo preenchimento das cápsulas. Já o volume a ser ocupado por uma determinada formulação na forma de mistura de pós é variável e dependerá da densidade aparente dos ingredientes ativos e excipientes. Todavia, no caso das cápsulas dual-release e combo, o volume da cápsula externa de maior tamanho estará parcialmente preenchido pelo volume ocupado pela cápsula interna menor. Portanto, esse volume remanescente da cápsula externa nas formulações na forma de cápsulas dual-release ou combo deverá ser determinado para o correto preenchimento das cápsulas com excipiente.

MediCaps® Duo

AMedCaps®Duo é um cilindro com graduações especialmente calibradas para medição da quantidade necessária de excipiente para o preenchimento do volume remanescente entre a cápsula interna e externa, resultante das diversas combinações entre tamanhos diferentes de cápsulas para fins de preparo de diferentes números de unidades cápsulas dual-release e cápsulas combo (ver figura 1). A MedCaps®Duo permite medir o volume remanescente a ser preenchido com formulação destinada a ser veiculada na cápsula externa para cada combinação específica de tamanho de cápsulas, interna e externa. As graduações para leitura das medições na MedCaps®Duo incluem as seguintes combinações de tamanhos de cápsulas determinadas para diferentes quantidades de unidades de cápsulas a serem preparadas, conforme relacionados na tabela 5:

Tabela 5. Graduações disponíveis para leituras de medições na MedCaps®Duo:

Tamanho da cápsula interna (# int.)	Tamanho da cápsula externa (#ext.)	Quantidade de cápsulas determinadas (unidades)		
3	1 0 1	30, 50, 60, 80. 90, 100, 120 e 180 30, 50,		
2	00	60, 80. 90, 100, 120 e 180 30, 50, 60, 80.		
4	0	90, 100, 120 e 180		
1	0	30, 50, 60, 80. 90, 100, 120 e 180		
3	00	30, 50, 60, 80. 90, 100, 120 e 180		
4	000	30, 50, 60, 80. 90, 100, 120 e 180		
3	00	30, 50, 60, 80. 90, 100, 120 e 180		
0		30, 50, 60, 80. 90, 100, 120 e 180		
4		30, 50, 60, 80. 90, 100, 120 e 180		
4				

Figura 1. MedCaps®Duo

Asgraduações da MedCapsDuo® estão dispostas em 10 colunas distintas gravadas ao longo da superfície externadocilindro. Cada coluna está relacionada com uma combinação específica de tamanhos de capsulas (ver figura 2). Aslinhas horizontais divisoras de cada coluna marcam o volume de medição correspondente ao número de unidadesde cápsulas a serem preparadas. O volume determinado corresponde ao volume total da formulação (ingrediente(s) ativo(s) + excipiente) necessário para o preenchimento dos volumes remanescentes entre as cápsulas internaseexternas. Considerando uma determinada formulação prescrita, os ingredientes ativos deverão ser pesados e em seguida, vertidos para a MedCaps®Duo. Posteriormente, realiza-se uma compactação do pó e adiciona-se o excipientede escolha em quantidade suficiente para atingir o nível da linha horizontal superior ao número designativo da quantidade de cápsulas a serem preparadas. O ajuste do nível de nível da mistura de pós deve ser realizado por compactação até obtenção de nivelamento ajustado na linha de leitura. Observar a posição dos olhos em relação ao nível de leitura da marcação. Mantenha o nível dos olhos no mesmo nível da marcação para obtenção de uma medição precisa.

A MedCaps®Duo permite a determinação rápida, prática, exata e precisa da quantidade de excipiente necessária para o preenchimento de cápsulas combinadas, dispensando a realização de cálculos.

Medição de volume na MedCaps®Duo

Atítulo de exemplo, consideremos o preparo de 90 cápsulas dual release ou combo, onde a cápsula externa seja de tamanho 00 (#00) e cápsula interna tamanho 3 (#3). Qual seria o volume total de pó (mistura ingrediente(s) ativo(s) + qsp de excipiente) necessário para preencher o volume remanescente da cápsula externa?

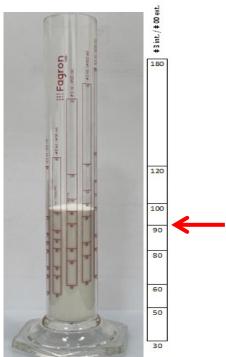


Figura 2. Medição na MedCaps®Duo (ex: combinação de cápsulas #3 com cápsulas /#00 para o preparo de 90 unidades de cápsulas).

Procedimento

- 1) Verter a mistura de ingrediente(s) ativo(s) da formulação (formulação que preencherá cápsula externa da combinação de cápsulas) previamente pesado(s) para a MedCaps®Duo.
- 2) Selecionar a combinação de tamanhos de cápsulas de acordo com o requerido para as formulações (ver figura).
- 3) Compactar a mistura de pós e em seguida, completar com excipiente até a marca correspondente ao número de cápsulas a serem preparadas. Ajustar o nível sob leve compactação do pó.
- 4) Para correta realização da leitura final, posicionar os olhos em paralelo e no nível da marcação horizontal correspondente ao número de cápsulas preparado.

Nota: A cápsula interna deve ser preparada pela forma tradicional e o cálculo de excipientes poderá ser realizado com o uso da MedCaps® tradicional. O uso conjunto da MedCaps® e da MedCaps®Duo confere praticidade, rapidez, exatidão e precisão na determinação da quantidade de excipientes para o preenchimento da cápsula interna e cápsula externa em formulações de cápsulas Dual Release e cápsulas Combo.

Processo de encapsulação O processo final de encapsulação cápsula-em-cápsula deverá ser realizado dispondo as cápsulas maiores (cápsulas externas) vazias na placa de encapsulação e retirando suas tampas. Em seguida, as cápsulas menores (cápsulas internas) já previamente preparadas pelo método tradicional (com as tampas devidamente travadas) devem ser inseridas dentro das cápsulas maiores com o lado da tampa voltado para baixo (figura 3). Esse posicionamento permite um melhor ajuste geométrico na combinação das cápsulas, permitindo um preenchimento facilitado e uniforme do volume remanescente entre as duas cápsulas. Em seguida, realiza-se a encapsulação da mistura de pó nas cápsulas externas (previamente preenchidas com a cápsula menor), distribuindo-a de forma suave e uniforme entre as cápsulas. A compactação do pó deve ser realizada somente a prévia distribuição dos pós com a espátula, de forma delicada com batidas leves e niveladas na bancada, prevenindo dessa forma uma eventual extrusão da cápsula interna. Não usar socador, pois o uso dele pode potencialmente induzir um amassamento da cápsula interna.

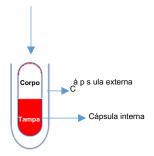


Figura 3. Inserção da cápsula interna na cápsula externa (posicionamento correto com a tampa da cápsula menor voltada para baixo).

Formulação preenchida no espaço entre a cápsula interna e externa

Figura 4. Preenchimento do corpo da cápsula externa

Exemplo: Formulação com a combinação da cápsula # 3 (interna) com a cápsula #00 cápsula combo ou

dual-release

- Encapsulação da cápsula menor (cápsula interna) na cápsula maior.
- Preenchimento da cápsula externa com a sua respectiva formulação.
- Controle de qualidade e prova de conceito.

Equipamentos/Materiais usados

- Balança eletrônica de precisão.
- Placas para encapsulação de cápsulas tamanho 3 e para tamanho 00

- Cápsula interna: #3
- Cápsula externa: #00
- Excipiente usado no exemplo DiluCap®SLD.
- MedCaps® (para determinação da quantidade de excipiente da cápsula menor interna)
- MedCaps®Duo (para determinação da quantidade de excipiente da cápsula maior ou externa após prévio preenchimento desta com a cápsula menor interna).

Procedimento de encapsulação Considerando neste exemplo a combinação da cápsula 3

(interna) com a cápsula 00 (externa)

Procedimento de encapsulação das cápsulas internas

Preparar inicialmente formulação da cápsula menor interna (ex. cápsula #3) pelo método tradicional de encapsulação.

Figura 5. Cápsulas nº3 (interna) e cápsulas nº 00 (externa)

Procedimento de encapsulação das cápsulas externas

- Selecionar a placa de encapsulação correspondente ao tamanho de cápsulas a serem manipuladas (tamanho da cápsula externa, no exemplo #00).
- Encaixar a placa sobre a base da encapsuladora.
- Inserir as hastes correspondentes à placa utilizada para fins de regulagem da altura para posterior preenchimento com as cápsulas.
- Preencher as cavidades da placa de encapsulação com as cápsulas (cápsulas externas, no exemplo 00) (figura 6).

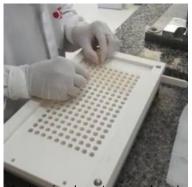
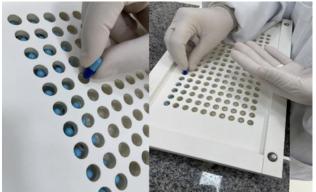



Figura 6. Inse encapsulação.

- Remover as tampas das cápsulas. Preencher as cápsulas maiores ou externas (no exemplo #00) com as
- cápsulas menores ou interna, contendo sua respectiva formulação já previamente encapsulada (no exemplo foi empregada a formulação contida na cápsula #3). A cápsula interna deverá estar perfeitamente travada e deverá ser inserida com lado da tampa voltada para baixo (figuras 7 e 8).

Figuras 7 e 8: preenchimento das cápsulas externas com as cápsulas internas

Em seguida, realiza-se a encapsulação da mistura de pó (medida na MedCaps®Duo) correspondente à outra formulação destinada ao preenchimento cápsulas externas que foram anteriormente preenchidas com a cápsula menor. Distribuir a mistura de pós de forma suave e uniforme entre as cápsulas com ajuda de uma espátula (figuras 9 e 10). A compactação do pó deve ser realizada de forma delicada com batidas leves e niveladas na bancada, prevenindo uma eventual extrusão da cápsula interna. Não usar socador, pois o uso dele poderá potencial amassar as cápsulas internas.

Figuras 9 e 10: preenchimento das cápsulas externas com a sua respectiva formulação.

Após o preenchimento das placas, as hastes reguladoras da altura da placa devem ser baixadas e posicionadas de forma tal que permita o travamento da tampa com o corpo da cápsula.

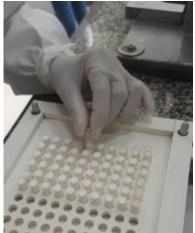


Figura 11. Fechamento das cápsulas externas após preenchimento.

- Travar a tampa com o corpo da cápsula (figura 11).
- Retirar totalmente as hastes posicionadas na base da placa, permitindo a extrusão das cápsulas preparadas.
- Proceder com a limpeza das cápsulas.
- Determinar o peso médio.
- Embalar e rotular.

Figura 12. Aparência final da cápsula dual release combo

Anexo Prova de conceito para avaliação da uniformidade do preenchimento da cápsula externa com a mistura de pós, usando o parâmetro peso médio das cápsulas (Referência: Farmacopeia Brasileira 6ª Edicão) Para fins de validação do método proposto foi avaliado o peso médio do conteúdo presente na cápsula externa para todas as combinações relacionadas na MedCaps®Duo. Abaixo está exemplificado o resultado do peso médio obtido com combinação entre cápsula #3 e cápsula #00 utilizando a MedCaps®Duo. Foram avaliadas e pesadas, individualmente, 20 unidades. Após a remoção completa do conteúdo de cada uma das cápsulas (incluindo a remoção da cápsula interna), pesou-se novamente as cápsulas. O peso do conteúdo de cada cápsula foi determinado pela diferença de peso entre a cápsula cheia e a vazia. Com os valores obtidos, foi determinado o peso médio do conteúdo. Pode-se tolerar, no máximo, duas unidades fora dos limites especificados na Tabela abaixo reproduzida da Farmacopeia Brasileira 6a edição, em relação ao peso médio do conteúdo, porém, nenhuma poderia estar acima ou abaixo do dobro das porcentagens indicadas.

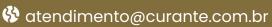
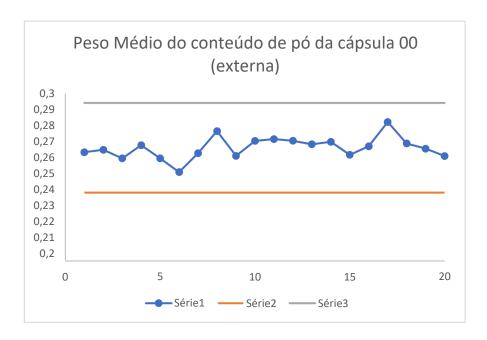


Tabela 1 - Critérios de avaliação da determinação de peso para formas farmacêuticas sólidas em dose

Formas farmacêuticas em dose unitária	Peso médio	Limites de variação	
Comprimidos não-revestidos ou revestidos com	80 mg ou menos	± 10,0%	
filme, comprimidos efervescentes, comprimidos	mais que 80 mg e menos que 250 mg	$\pm 7,5\%$	
sublinguais, comprimidos vaginais e pastilhas	250 mg ou mais	± 5,0%	
Comprimidos com revestimento açucarado (drágeas)	25 mg ou menos	± 15,0%	
•	mais que 25 mg e até 150 mg	$\pm 10,0\%$	
	mais que 150 mg e menos que 300 mg	$\pm 7,5\%$	
	300 mg ou mais	± 5,0%	
Cápsulas duras e moles, cápsulas vaginais	menos que 300 mg	± 10,0%	
Capsulas duras e moies, capsulas vaginais	300 mg ou mais	± 7,5%	
Supositórios e óvulos	independente do peso médio	± 5,0%	
Pós estéreis, pós liofilizados e pós para injetáveis	mais que 40 mg*	± 10,0%	
Pós para reconstituição (uso oral)	menos que 300 mg	± 10,0%	
r os para reconstituição (uso orai)	300 mg ou mais	$\pm 7,5\%$	

^(*) Se o peso médio for de 40 mg ou menos, submeter ao teste de Uniformidade de doses unitárias (5.1.6).

Resultado


	Peso Cápsula 00 l	Peso Cápsula 00 F	eso Cápsula 3	Peso Cápsula 3	Peso conteúdo de pó		
	(externa) Cheia	(externa) Vazia	(interna) Cheia	(interna) Vazia	Cápsula 00 (externa)	Limite Inf.	Limite Sup
1 2 3 4 5 6 7 8 9 10 11 12 13	0,5659 0,5713 0,5730 0,5721 0,5705 0,5524 0,5648 0,5717 0,5634 0,5662 0,5751 0,5737 0,5683 0,5807	0,1168 0,1203 0,1266 0,1187 0,1231 0,1149 0,1131 0,1122 0,1163 0,1112 0,1158 0,1177 0,1129 0,1243	0,1842 0,1847 0,1852 0,1843 0,1862 0,1845 0,1874 0,1820 0,1844 0,1834 0,1866 0,1843 0,1858	0,0479 0,0470 0,0459 0,0470 0,0473 0,0478 0,0472 0,0462 0,0461 0,0478 0,0475 0,0471 0,0470	0, 2649 0, 2663 0, 2612 0, 2691 0, 2612 0, 2530 0, 2643 0, 2775 0, 2627 0, 2716 0, 2727 0, 2717 0, 2696 0, 2711	0, 2408 0, 2408 0, 2408 0, 2408 0, 2408 0, 2408 0, 2408 0, 2408 0, 2408 0, 2408 0, 2408 0, 2408 0, 2408 0, 2408 0, 2408	0, 2943 0, 2943
15 16	0,5602 0,5738	0,1135 0,1221	0,1834 0,1833	0,0470 0,0467	0, 2633 0, 2684	0, 2408 0, 2408	0, 2943 0, 2943
17 18 19 20	0,5882 0,5740 0,5711 0,5625	0,1189 0,1186 0,1196 0,1119	0,1864 0,1853 0,1845 0,1880	0,0486 0,0472 0,0468 0,0485	0, 2829 0, 2701 0, 2670 0, 2626	0, 2408 0, 2408 0, 2408 0, 2408 Limite: ± 10%	0, 2943 0, 2943 0, 2943 0, 2943 0,0268

Peso Médio conteúdo de pó na cápsula 00 (externa) = Desvio padrão =

CV% =

2,42

Conclusão

Após todos os cálculos e a observação do atendimento de todos os requisitos, a encapsulação e o peso médio foram APROVADOS.